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1

A Derivation of the Unbiased Standard Error of Estimate:
the General Case

Francis J. O'Brien, Jr., Ph.D.

Introduction

This paper represents the f!fth in a series of applied statistics
monographs (See O'Brien 1982a, 1982b, 1982c, 1983a) . The purpose of these
papers is to provide supplementary reading for applied statistics students.
The intended audience is social science graduate and advanced undergraduate
students. The minimum background for i.lost of the existing and forthcoming
papers is familiarity with elementary analysis of variance, and multiple
correlation and regression analysis.

The unique feature of this series is detailed proofs and derivations of
important formulas and relationships which are not readily available in
textbooks, journal articles and similar sources. Each proof or derivation is
presented in a detailed and clear fashion using well defined and consistent
notation. When necessary, a review of relevant algebra is provided.
Calculus is not used or assumed.

The present paper assumes familiarity with two previous papers in this
series (O'Brien, 19820, 1983a). Each paper formulated a detailed derivation
of the multiple correlation formula of one criterion and p predictors for the
linear model. The first" paper (1982c) presented a derivation of the
multiple R based on

1

standard (Z) scores, and the second showed the analogous
2

derivation for the raw score model.

Overview of Derivation

In the present paper derivations of the unbiased standard error of
estimate for both the raw score and standard score linear models are
presented. The derivations will be presented in graduated steps of
generality. First the derivation for one criterion (dependent) variable and
one predictor (independent) variable is presentd for the raw score model. A

derivation for two raw score predictors is then presented. Next, the
derivation for the three predictor case is formulated. Finally, the
derivation for any (finite) number of predictors is presented. Derivations
for the standard score model are then outlined.
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Overview of Regression Analysis

Prior to presenting the derivations, a brief overview
3

of regression analysis will be given. Let us consider
the linear regression model for one raw score criteHon and
one predictor. Assume one is attempting to predict one
criterion with one predictor. We assume that the model

4

is linear in form. The mathematical model we might select
to"fit" such a distribution is the simple linear equation:

A
a + b X

1 1

Where:

A
Y : the predicted criterion,
a = the slope intercept term,

the slope coefficient term,
1

the predictor variable in deviation score form ; i.e.,

1

x x - 7 where "T is the arithmetic mean.
1 1 1 1

If a scatter diagram were constructed for this hypothetical model (based on
actual data, of course), the actual rau score observations would in all
likelihood not fall on the line defined

A
by the linear equation of the idealized mai-hematical model (Y).

A
Such deviations from Y are considered errors of prediction. We can
conceive a raw scor :? observation as consisting of a component predicted by the
model plus an error component. That is:



3

+ e
Where:

Y the actual criterion we want to predict by YA
e the amount of numerical error resulting from using

A
the idealized mathematical model (Y) to predict the
actual raw score criterion (Y).

That is, an actual dependent (criterion) variable score consists of the
quantity predicted by the idealized "best fitting" line plus an error
component.

The error made in predicting the observed criterion score by the model is

simply:

enY-Y

One of the goals of regression analysis is to minimize the prediction error
denoted by e above. It can be seen that if e.0, then the actual criterion is
perfectly predicted by the selected mathematical model. That is to say, the
simple linear

equation fitted to the observed data points, a + b x ,

1 1
predicts every observation (Y) in the distribution. Geometrically,

when egO, every Y score falls on the straight line, Y. For this case, the
values corresponding to a and b can be solved empirically using elementary
algebra based on the observed data. Rarely, however, do such distributions
exist in the social sciences. Consequently, we are forced to select
procedures which will provide computing formulas for calculating the a and b
terms.

The technique most often used in the social sciences -`o minimize the
error of prediction is the "least squares" procedure. Essentially, this
procedure seeks to maximize predictability by minimizing prediction error.
The least squares criterion or goal is summarized in the following

expression:

If we substitute the quantity for Y
least squares criterion as:

9

a minimum

previously defined, we can rewrite the
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2 2 2

2 - (a+b x (Y-a-b x ) Ie minimum
1 1 1 1

(As an aside, "least squares" means we determine values for a and b such that
the squared error term results in the least possible value).

The Standard Error of Estimate

The standard error of estimate provides a measure of the

average amount of error that results from using Y for Y score prediction.
(See Lindeman, et al.). The unbiased standard error of estimate for one
predictor is defined as follows:

where:

... 2

(Y-Y .)

2

1-17-(a+b (X - X )1

1 1 1

2

E(Y- a - b x )
1 1

n-2

Y.x the unbiased standard error of estimate for
1 one predictor,

the sample size.

Note that the predictor variable (x ) is in deviation form.
1

However, the criterion to be predicted (Y) is not transformed;nor

A
do we transform the predicted criterion (Y),

This is the definitional formula for the unbiased standard error of
estimate. An equivalent formula shown in virtually all
applied statistics textbooks is as follows:

1 0



where:

5

2

n-1 (1-r )

S x y
Y.x S n-2 1

1 9

S

y the standard deviction of the actual criterion score,

2

r the square of the simple Pearson correlation between
x Y
1 the predictor in deviation form (x ) and the

criterion (Y). 1

This formula will be derived in this paper.
In general, the standard error of estimate con be

obtained for a linear regression model containing any finite number
of predictors. If we let p represent an indefinite number
of raw score predictors, the unbiased standard error
of estimate can be expressed as::

BEST COPY AVAILABLE
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Y.x ,x ,...,x X(Y- Y

1 2

where:

.411".11

n-(p+1)

2

(n-1) (1- R
Y.x , x , x , x

1 2

n-(p+1)

Y.x ,x the unbiased standard error
1 2 j p of estimate for p predictors

(in deviation score form),
an indefinite number cf predictors,

2

the squared linear multiple
Y.x ,x correlation between one criterion and

p predictors.

6

This formula also will be derived in this paper.

The standard error of estimate also can be de:ived for regression models
in which the variables have been expressed in standard score (Z) form. The
unbiased sample standard error of estimate for a one predictor standard score
linear



model is defined as :

where:

A

3.

a

7

7

n-2

2

2.

E[zy - (A +

iij

n-2

the standard error of estimate for the
standardized criterion (Z ) and the

standardized predictor (Z ),
1

a the sample size,

8 the slope intercept term,

the standardized predictor,

the beta (regression) weight.

the prediction error.

We show that the definitional formula above is equal to:

2

Z .Z n-1 (1-r

Y 3.

n-2
Z ,Z
Y 1

13



where: 2

Z , Z

Y 1

8

the squared correlation of Z and Z .

1

For standard score variables, the unbiased standard error of
estimate for p predictors is:

n-1 2

Z .Z ,Z ,...Z - R

Y 1 2 j P n-(p+1) Z .Z , Z , ...,Z , ...,Z

where:
Y 1 2

Z

2

Z

.Z ,Z

1 2

.Z ,Z

...,Z

j

,...,Z

p

unbiased standard error of estimate
for p predictors,

squared multiple correlation
between the criterion (Zy)

Y 1 2 j p and p standardized predictors.

In this paper we will concentrate on the standard error of estimate
for the raw score model. The derivations for the Z score model will
be outlined. The reader may wish to work out the derivations
for the standard score model using the detailed presentations for
the raw score model as a guide.

Derivations for Raw Score Model

In the next several sections, we will show the derivations of the
unbiased standard error of estimate for raw scores. We begin with the
simplest case of one criterion and one predictor.

Derivation for One Predictor

For the readers convenience in working through the algebra, we will
summarize relevant definitions and formulas. This is done in Table 1.

1 4



Table 1

9

Basic Sample Descriptive Statistics for One Predictor
Raw Score Model

a A
Regression Model Y a+bx V+ r

1 1 91 y x

Variance of Y:

S 1

1

2

2

9
N r(Y-v) 1 9

2

Variance of X : S

1 X

1

n-1 n-1

n-1 n-1

Correlation of

x and :

1 1

91 (n-1) S S
Y 1

Note: All summations range from i.1 to in observations.
a

This is derived from the least squares criterion ;i.e.,

2 n 2 n 2

- Y ) r .(Y -a-b x ) N 6 minimum
i.1 i f 1.1 i 1 1 i.1 i

See O'Brien, 19830, p. 44

See O'Brien, 19830, for justification that the numerator in the
correlation formula may be given as:

Y, 9 or IX Y, where x X - 7 and 9 .Y-Y.
1 1 1 1 1 1

In this paper, we will use the correlation expression

15



r (or r ).

yl 92

10

We begin by repeating the definition of the unbiased standard error
8

of estimate:

Substituting for Y.

2

1:(Y - a - b x )
1 1

Y.x
1 n-2

It will be easier if we work with the variance err,or of estimate.
This is simply the square of the standard error of estimate:

2

2

Y.x (Y a - b x )

1 1 1

n-2

It was shown by the author that the slope intercept term, a, is

equal to the criterion mean, V (See O'Brien, 18830, p.44).
Making that substitution and rearranging terms:

1 6



2

11

Y.x p-7) - b x )]

1 1 1

2

n-2

Let us express (Y-7) in deviation score form to simplify the

algebra: 9 Y-Y. This gives us:

2

2

Y.x E (y-b x )
1 1 1

n-2

Squaring out the terms inside parentheses for this binomial
expression:

2

2 2 2

Y.x + b x - 29b x )
1 1 1 1 1 1

n-2



Bringing the summation operator inside and factoring constants

out54de the summation operator (recall that b functions
1

as constant to be estimated in the regression mcdel):

2

Y.x
1

2 2 2

( 9 b

1

-2b x 9)

1 1

n-2

Substituting the following expressions (see Table 1):

2 2

(n-1) S

2 2

N:x
1

(n-1)S
1

1 r

91

(based on substitution from
1 Table 1 and O'Brien, 1983a, p.44)

Y (n-1)r S S

1 91 9 1

Thus:

2

2 2 2

Y.x 1 (n-1)S + (r S / S ) (n-1)S

91 9 1 1

n-2

-2(r S /5 (n-1)r S S )]
91 9 1 9191

Factoring out the (n-1) term:

1 8

12



Simplifying:

(n-1) S

(n-2)

2 2 2 2 2

+ r (S /S ) S 2r S

y1 y 1 1 y1 y

2

[li

2 2 2

(n-1) S + S 2r S

Y.x 9 91 9 91 9

1 (n-2)

1.

2 2 2

(n-1) S r S

9 91 9

2 2

S (n-0

9 91

(n-2)

Taking the (positive) square root, the unbiased standard error of estimate
for one raw score predictor is:

Y.x a y (n-1) 1
1

(n-2)

1 9

ENO OF PROOF

13



Derivation for Two Predictors

14

In this section we seek to show that the unbiased standard
error of estimate for two raw score predictors is:

2

Y.x ,x y (n-1) Ii - R .x ,x
1 2 Y 1 2

(n-3)

where:

the observed criterion standard deviation,

2 squared

the/mUltfpfle correlation between the criterion and
Y.x x the two raw score predictors (in deviation score

1 2 form)

We begin with the definition of the unbiased standard error
of estimate for two raw score predictors:

Y.x ,x
1 2

A 2

(Y-Y )

n-(p+1)

a
A

E(Y-Y

n-3

2

BY -a -bx- bx )

1 1 2 2

n-3

2

As in the one predictor derivation, it will be easier to work with the
variance error of estimate:

20
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2

S 2

Y .x , x SE(Y- a- bx -bx)
1 2 1 1 2 2

r.w.gw.m.m.Mgmm.wa./Mr.

n-3

Substituting -sir for the slope intercept term and rearranging:

2

S

Y.x ,x
1 2

2

Z[Y-7) -bx -bx)
1 1 2 2

n-3

Now, expressing Y-7 in deviation form and expanding the
trinomial expression:

2

S 2 2 2 2 2

Y.x ,x 1 [y+bx +bx
1 2 1 1 2 2

n-3 -2yb x - 2yb x + 2b b x x ]
1 1 2 2 1 2 1 2

Bringing the summation operator inside and factoring constants:

21
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2

S 1 2 2 2 2 2

Y.x ,x -- ( 1:9 + b 7x + b 5- x

1 2 n-3 1 " 1 2 ' 2 1 1 24 2

+ 2b b rx x )
1 2 1 2

The following formu)as can be used for simplification:

2

L9

2

7Ex

1

2

EA2

2

(n-1)S

2

(n-1)S

1

2

(n-1)S
2

(n-1)r S S

91 9 1

(n-1)r S S

92 9 2

(n-1)r S S
12 1 2

For ease reference, these formulas are summarized in
Table 2.
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Table 2
Substitution Equations for Two Predictor Raw Score Model

2 2

(n-1)S

9

2 2

1

(n-1)S
1

2 2

Ex
2

(n-1)S
2

E x u (n-1)r S S
1 y1 y 1

(n-1)r S S
2 y2 y 2

yx x (n-1)r S S

1 2 12 1 2

Note: equations are expressed in deviation score form.
Each equation is based on algebraic rearrangements for
basic sample descriptive statistics (compare Table 1).
For example, the variance of Y is:

2 2 2

S " E(Y-7) /(n-1) Ey /(n-1)
9

2 2 2

Solving in terms of (n-1)S .

9

23



Making these substitutions:

18

2 2 2 2 2 2

S 1 fin-1)S + (n-1)b S + (n-1)b S

9 1 1 2 2

1 2 n-3
-2(n-1)b r S S 2(n-1)b r S S

1 91 9 1 2 92 9 2

+ 2(n-1)b br SS
1 2 12 1 2

Factoring out the (n-1) term and rearranging:

2 r2 2 2 2 2

(n-1) S + (b S + b S + 2b br SS)
Y.x ,x 9 1 2 2 2 1 2 91 9 2

1 2 (n-3)

-2(brSS+brSS )1

1 91 9 1 2 92 9 2

The next step is very important. The two terms in parentheses
reduce to functions of the squared multiple R for two predictors.
As was shown in the author's 1383a paper, the derivation of
R for two predictors results in several equivalent ways to express

2 2

R or R . Table 3 shows forms of R which will be used in the
next step. (Compare O'Brien, 1383a, pages 12-18, especially p. 18).

24



Table 3
2 a

Functions of R for Two Raw Score Predictors.

2

2 2 2 2

bS +bS + 2bbrSS
1 1 2 2 1 2 12 1 2

Rearranging:

br SS +br SS
1 '21 y 1 2 y2 y 2

2 2

9

2 2 2 2 2 2

R S b S +b S + 2bbr SS br SS +br SS
9 1 1 2 2 1 2 12 1 2 1 y1 y 1 2 y2 y 2

2 2

Note: R a R

Y.x ,x
1 2

a

See O'Brien, 1983a.

25

19



Thus,

2 2

R S
2 2 2 2

bS +bS +2bbr SS
1 1 2 2 1 2 12 1 2

a br SS +br SS
1 91 Y 1 2 92 Y 2

Making these substitutions:

2 n-1 2 2 2 2 I
S + S R - 25 R

Y.x ,x n-3 9 9 9

1 2

S

n-1 2-1;

n-3

n-1 2 2

S 1- R
n-3 9 Y.x ,x

1 2

Taking the positive square root, the unbiased standard error of estimate for
two raw score predictors is:

2

S (n-1) [1- R

Y.x ,x 9 ------- Y.x ,x
1 2 (n-3) 1 2

Derivation for Three Predictors

END OF PROOF

20

Prior to showing the derivation for the general case of p predictors, we
will present the derivation for the three predictor model. This allows us to
review the logic and procedures of the derivation. In addition, we introduce

26
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summation notation throughout all of the steps of the derivation which
simplifies the algebra for the general case.

For three raw score predictors, we will show that:

2

S] n-1 R

Y .x , x , x 9 Y.x ,x , x

1 2 3 n-4 1 2 3

We begin by presenting the definition of the unbiased standard error
of estimate for three predictors:

Y.x ,x ,x
1 2 3

E CY -

n- (p+1)

2

-bx -bx)
1 1 2 2 3 3

n-4

As before, we will work with the variance error of estimate:

27
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2

a- bx -bx -bx)
2 1 3. 2 2 3 3

Y.x ,x ,x
1 2 3 n-4

Proceeding as before, we first replace a with V and

express Y - Y as 9:

2

S E - bx -bx -bx)
Y .x , x , x 1 1 2.2 3 3

1 2 3

n-4

E [9 -bx - bx -bx
2

1 1 2 2 3 3

n-4

Expanding this quadrinomial expression:

2

Y.x ,x ,x
1 2 3

3.

LI
n-4

2 2 2 2 2

+b x + b x + b

1 3. 2 2 3

- 29b x - 29b x - 296 x
1 1 2 2 3 3

2

x

3

+ 2b b x x + 2b b x x + 2b b x x
1 2 1 2 1 3 1 3 2 3 2 3

Bringing the summation operator inside:

28



2 1 2

Y.x ,x ,x n-4
1 2 3 2 2 2

+b +b 5x +b yx
1 1 2 2 3 3

- 2b rx y - 2b x y - 2b x y
1 1 2 2 3 3

2b brxx 2b b x + 2b b cx x
1 2 1 2 1 3 1 3 2 31-- 2 3

The following substitution formulas stated in general form will help us to
simplify the above expression (see Table 4 for reference):

2 2.

(n-1) ru

For any x

2 2

For any A lc
Y 4

EA X. (n-1)r S S
Y

j

For any x x :

i j

(n-1)r S S

i j ij i j

Applying these substitutions:

29

23



2
S 1 2
Y.>: ,x ,x En-1)5

1 2 3 n-4 9

24

2 2 2 2 2 2
(n-1) b S + (n-1) b S + (n-1)b S

1 1 2 2 3 3

- 2(n-1)b r S S - 2(n-1)b r S S - 2(n-1)b r S S
1 91 9 1 2 92 9 2 3 93 9 3

+ 2(n-1)b br SS + 2(n-1)b br SS + 2(n-1)b br SS
1 2 12 1 2 1 3 13 1 3 2 3 23 2 3

30
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Table 4 a

Generalized Substitution Equations For Raw Score Model

2 r 2
(n-1) Ly

9

2 2

(n-1) Ex

(n-1)r S S

9j 9 j

CE:x x (n-1)r S S
i j ij i j

a

For example, the second equation applies to any X variable;
for the jth X variable, the sum of squares is related to the
jth variance.

31_



Factoring out (n-1) and rearranging:

2

n-1

9

Y.x ,x ,x
1 2 3 n-4

2 2 2 2 2 2

+(b S +b S +b S + 2bbr SS .r2bbr SS + 2bbr SS)
1 1 2 2 '3 3 1 2 12 1 2 1 3 13 1 3 2 3 23 2 3

-2(br SS+br SS+br SS )1
1 91 9 1 2 92 9 2 3 93 9 3

We now express the parenthesized terms in summation notation (see O'Brien,
13830:

2

Y.x x ,x
1 2 3

n-1 r 2
maillma.11=1111Mlis Sy

n-4
3 2 2 3 2

+ ( $ + 2 1 r bbr SS)
j1 j j j2 1.1 i j ij i j

3

- 2 (' z br SS )
ji

1
j 9j V j

2

Table 5 shows equivalent forms of R for three predictors stated

in summation notation.

32

26



Table 5
2 a

Functions of R For Three Raw Score Predictors

2

Rearranging:

3 2 2 3 2

S + 2 E. bbr SS 2: b r S S

j'1 j j j'2 i'1 i j ij i j j.1 j yj Y j

2 2

9 9

2 2 3 2 2 3 2 3

RS S + 2 'Er bbr 5 $ gEbr SS
9 j1 j j j=2 in1 i j ij i j j'l j 9j j

2 2

Note: R

Y.x ,x ,x
a 1 2 2

See O'Brien, 1983a

33
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Thus:

2 2

R S

9

3 2 2 3 2

b S bbr SS
j j ja2 ia1 i j ij i j

3

br SS
j 9j 9 j

Substituting:

2

Y.x ,x ,x
1 2 3

Simplifying:

[

n-1 2 2 2 2 2

S + S R 2S R

n-4 y 9 9

34

28
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2 2

n-1 S IiR
Y.x ,x ,x 9

1 2 3 n-4

or

2 2 2

n-1 S [1 - R

Y.x ,x ,x 9 Y.x ,x ,x I
1 2 3 n-4 1 2 3

Therefore, the unbiased standard error of estimate is:

Y.x ,x ,x
1 2 3 9

2

n-1[. - R END OF PROOF
Y.x ,x ,x

n-4 1 2 3

Derivation For p Predictors

In this section, we show the general form of the unbiased
standard error of estimate when the regression model contains
some unknown but finite number of predictors (p).
We will follow the same steps in the derivation we used for one,
two and three predictors. It will be seen that the derivation
for the general case of p predictors is a straightforward
multivariate generalization.

Formally, we will show that the unbiased standard error of
estimate for p predictors is:

35
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S 1 n-1 R

n-(p+1)

-

1 2 1 2

2 2

Definitions for terms in the formula were given in the section
"Overview of Derivation".

Starting with the definition of the unbiased standard error
of estimate:

1 2 .

2

)

n-(p+1)

1

2

1: [Y- a-bixi-b2x2-...-b.x.-...-b x ]
J J P P

n-(p+1)

As in the previous derivations, we will work with the variance error of
estimate:

2 2

S 7 (Y-a-b x -b x -...-b x -...-b x )
I-- 1 1 2 2 j j p p

1 2 j P
n-(p+1)

Now replace a by V , and express Y-7 in deviation score form:

2 2

S

Y.x ,x ,...,): ,...,x 1: 1 1 2 2 j j P P
1 2 j P

n-(p+1)
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Expanding this multinomial:

31

2 1

X

Y .x , x , x , x n- (p+1)

1 2

2 2 2 2

E(9 +b x +b x

1 1 2 2

2 2 2 2

+...+ b x +...+ b x

ii P P

- 29b x - 29b x 29b x -...-2yb x
1 1 2 2 j j P P

+ 2b b x x + 2b b x x +...+ 2b b x x +...+ 2b b x x )

1 2 1 2 1 3 1 3 ijij p-1 p p-1 p

Bringing the summation operator inside:

2 1

Y .x , x , x , x n- (p+1)

1 2

2 2 2 2 2 2 2 2

( E9 + b rx + b +...+ b r.x +...+ b x

1 1 2 2

- 2b \5, 2b 7yx ...-2b sx ...-2b ST' yx
1 1 2 2 j/ P

+ 2b b x + 2b b x x +.. b x +...+2b b 1:x x )

1 2 1 2 1 3' 1 3 .! 4 i j p-1 p p-1 p

Using the generalized substitution formulas given in Table 4, we
can simplify as follows:

3 7
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Y.x ,x , ...,x
1 2

2 2 2

(n-1)S + (n-l)b S +

9 1 1

32

1

X

n-(p+1)

2 2 2 ''

(n-l)b S +...+ (n-1)b 5
2 2 p p

- 2(n-1)b r S S - 2(n-1)b r S S 2(n-1)b r S S .-

1311 2 y2 y 2 JJJ
2(n-1)b r S S

P YP P

+ 2(n-1)b b r S S + 2(n-1)b b r S S +...+ 2(n-1)b b r S S +...+
1 2 12 1 2 1 3 13 1 3 i j ij i j

2(n-1)b b r S S 1
p-1 p p-1,p p-1 p

Factoring out (n-1) and rearranging:

2 n-1

X

Y.x ,x n-(p+1)

[S2

1 2

2 2 2 2 2 2 2 2

+ (b S + b S +...+ b 3 +..+ b S +

1 1 2 2 ii P P

2b b r S S + 2b b r S S +...+ 2b b r S S +...+
1 2 12 1 2 1 3 13 1 3 i j ij i j

2b b r S S )

p-1 p p-1,p p-1 p

2(b r SS +br SS +...+ b r SS +...+br SS)
1 y1 y 1 222 j9j9j P913913

Expressing the terms in parentheses in summation notation:
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S X

Y.x ,x ,...,x ,...,x n-(p+1)
1 2 j P

n-1

33

2

9

S

2... 2 2

+ (L b S + 2

j1 j j j°2

P2(r br SS )1
J*1 j 9j 9 j

bbr SS)
i jiji j

2

Table 6 shows equivalent forms of the multiple R for p
predictors (see O'Brien, 1983a).
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Table 6

34

2 a

Functions of R for p Predictors

p 2 2

s + 2 bbr SS r br SY
2 jl j j j2 i1 i j ij i J j1 j 9j Y j

2 2

9 9

Rearranging:

2 2 p 2 2

RS 6 E b S + 2 LEbbr SS çbr SS
9

jal j j p2 i1 i j ij i j jm1 j 9j 9 j

2 2

Note: R

Y.x ,x , ...,x , ...,x

a 1 2

See O'Brien, 1383a

4 0



Thus:

2 2 p 2 2 p p-1

RS 1E:b S + 21bbr SS
9 j j j.2 i1 i j ij i j

'tbr SS
j=1 j 9j 9 j

Substituting into the variance error of estimate above:

2

Y .x , x , x x

1 2

n-1 2 2

S + R S - 2R S
n- (p+1) 9 9 9

2 n-1 2 2

° S 1 - R

Y.x x , x , x n- (p+1) 9 9.x x x x

1 2 j p 1 2

Therefore:

n-1 2
s R

Y .x x , x x 9 n- (p+1) Y.x x x x

1 2 j p L 1 2

END OF PROOF
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Derivations for Standard Score Model

Introduction

We have presented derivations for the unbiased standard error
of estimate for the linear raw score model when the number
of predictors was one, two, three and some finite number, p.
In this part of the paper we will outline the derivations
for the standard score model.

The reader may be aware of the fact that there is
a simple relathnship between models in raw score form
and standard score (Z) form. This relationship obviates the
need for presenting detailed derivations for the Z score model.
Therefore, we will outline the derivations for the standard
score model, and leave the proofs as an exercise for the reader.
We will show the logic behind transforming from the linear
raw score model to the Z score model. First we take the standardized
model for one predictor. We then provide an outline
for generalizing the derivation for the p predictor standard
score case.
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Derivation for One Predictor

Recall the derivation for the one predictor raw scot-, model.
The derivation of the standard error of estimate was shown
to be:

2

n-1. [1-r

--- x

9 n-2 1

Let us now consider the model in standard score form.
First, recall the following relationships for the Z score
model (See O'Brien, 1982b for proofs):

2 2

r

Z ,Z 91
Y 1
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That is, the standard deviation for the raw score
variable Y is equal to unity when Y is standardized.
Also, the square of the simple (zero order)
Pearson correlation when calculated in raw score form
is identical to the correlation between the same variables
that have each been standardized.Taking these facts into account,
we can rewrite the raw score standard error of estimate
for Z scores as follows:

9

2

1

2

n-1 1-r
Z ,Z

n-2 Y 1

2

n-1 1-r
x y

n-2 L 1

1[7::
x y

n-2 1

4 4
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If one were to extend this logic to the case
of p standardized predictors, the standard error of estimate
for p standardized predictors is:

-

n-1 2

.Z ,Z ,...Z 2 Z R

Y 1 2 j p 9 n-(p+i) Z .Z , Z

Y 1 2

1

2

(n-1) [1- R

Y.x ,x ,...,x.

1 2

n -(p+1)

For the p predictor case S also is equal to 1.

9

It remains to be proved 'That the squared multiple R's
are equal to one another.. It can be shown that they
are equal for p predictors, although this statement is
not proved in this paper.
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Outline for Derivations

The reader who desires to derive the unbiased
standard error of estimate for p linear standardized
predictors may use the following outline as a guide.
Essentially, the steps parallel those for the raw
score model. First, the definitional form for
the standard error of estimate is stated.
Substituting the terms of the regression model
for p predictors is the second step. (See O'Brien, 1983c).
Third, square the multinomial expression. Nex+, a

series of equations are substituted into the squares
and cross products of the squared multinomial. The
reader may refer to the author's paper (1983c) for
the relevant equations. The simplified expression
is then expressed in summation notation. Functions
of the multiple squared R are substituted. Upon
simplification, the result will be the unbiased
standard error of estimate for the Z score model.

Many students who work out the derivations for
the Z score model prefer to work with several
predictors in succession. This was our approach
for the raw score model derivations. A careful review
of the steps used in the raw score derivations

9

may be helpful in working through the long tedious algebra.
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Appendix A

Errata for "A derivation of the samplemultiple correlation formula

Page Nol.irReads

10, footnote, X Y
3 lines down

10, footnote, n X Y
4 lines down

13

16, footnote,

var (b ,x )

2 2

for raw scores, ED 235 205

Correct to

X Y
1

n X Y
1

var(b x )
2 2

... and simplifying.iSee See the text for details.
last 2 lines text for details.

17, footnote

24, footnote 1

29, equation x Y

30, 3 lines from bottom

34,2nd equation

36, 2 lines from
bottom of text

38, 2nd equation

43, last line in text

Page number-at -top of text:-

Multiple R

j

b x
p p

bbr SS
2 j 2j 2 j

=...+b r S S

j yj Y j

multiple R

Omit this.
2

b x
p p

bbr SS
2 p 2p 2 p

change = to +

mathematical calculus mathematical statistics

2

1

4 7

2

2

s =
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Appendix B

Discussion of Linear and Nonlinear Regression Models

This appendix will clarify terminology used in two previous papers
(O'Brien, 1982c, 1983a). Some readers have requested clarification of my use
of terms "linear" and "nonlinear' as they apply to regression analysis.

There are two reasons why this should be done. First, the terminology
and/or notation used in applied social science statistics textbooks and
similar sources is quite variable. This has the potential for causing
confusion in students' minds when attempting to read the same subject matter
in different sources. Second, it is very important to be clear about the
differences between a linear and nonlinear regression model. As will be seen,
"truly" nonlinear regression models are not often used in many areas of social
science.

Our aim in this appendix merely is to clarify the uses of the
terminology. References are cited at the end of the appendix for readers who
desire to learn more about nonlinear regression models.

I believe confusion exists in the use of the terminology for several
reasons. Perhaps the basic factor relates to what students learn in
nonstatistical mathematical courses. The terms linear/nonlinear as they
relate to functions or rolationships discussed in mathematics textbooks are
not used in the same way by statisticians when discussing linear/nonlinear
regression models.

Consider a simple example of the parabola (or quadratic or second degree
equation):

2

Y f (X) -3 < X < 3

MM. 111
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If this function is plotted on ordinary graphing paper for
values of X + 3 the plot would show a curve opening downward

with maximum height of 8 Y units at the origin. This function is
not linear in form because it cannot be expressed in the
form of a first degree equation:

Y i(X) n a + bX

Geometrically, a plot of the quadratic function above
would not reveal a straight line or linear function.
For these two reasons/the parabola may be thought
of as a "nonlinear" function.

Statisticians use the terms linear/nonlinear in
a different manner. In the statisticians use of the
terms, the difference between them has more to do
with the form of the regression parameters (slope terms)
than with the form of the independent or dependent variables.
In addition, a plot of the raw observed data points
is not relevant to classifying a regression model as linear
or nonlinear.

Let us examine some examples. Assume the following regression
model (adapted from Draper and Smith, p. 264):

2

F exp(b + b X + e)

1 2

Where:

the dependent variable,
exp the exponentiation operator for the mathematical

constant, e 2.71828 (approx.),
b,,b parameters to be estimated,
XI 2- the independent variable,

the stochastic error term (as used in this paper).

Note that equation 1 expresses what we have been calling a
"raw score model";e.g., for equation 1, we could write:

A
F exp(F + e).

Is the model in (1) a linew, or nonlinear regression
model? We need to examine the terms in (1) to decide.

Let us now rework equation 1 to render the model linear.
If we take the natural logarithm of each side of equation 1,
we obtain:

(1)
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2

lnF lnExp(b + b X + e).)

1 2

2

b + b X + e (2)

1 2

We now redefine the terms in equation 2. Let:

Y lnF,

2

X X

Then (2) becomes:

Ymb + bX +e
1 2

(3)

Equation 2 has been linearized. Statisticians would call the regression
model expressed in (3) a linear model despite the fact that the relationship
between the dependent and independent variables is not one of a straight line.

Draper and Smith offer useful terminology to distinguish (1) from (3).

The regression model stated in (1) may be referred to as intrinsically linear.
This means that although equation 1 is nonlinear (with respect
to the parameters b and b ), transformations

1 2

can be made to express the model in a form which is linear (with respect to
the parameters).

To take a second example (also from Draper and Smith), consider the
following regression model:

1

exp(-b X) - exp(-b X] + e
b - b 2 1

1 2

Where:

the dependent variable,
exp as in equation 1,
b ,b the parameters,
1 2

X the independent variable

(4)

This model is nonlinear (with respect to the parameters). In addition,
equation 4 cannot be transformed such that the parameters will be linear in
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form. Draper and Smith refer to such a regression model as
intrinsically nonlinear.

Further discussion and examples of linear/nonlinear regression mw.;els
may be found in Kendall and Stuart (1967), Mosteller and Tukey (1977) and Nie,
et al. (1976). Those references provide additional source material.
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Notes

1

See O'Brien (1983a, Appendix B) for an errata sheet. Page
references given in the errata pertain to the original pagination
(i.e., at the top of the page).

2

Errata for this paper are given in Appendix A of the present paper.

3

Readers who need to review regk-ession analysis theory can refer
to standard applied statistics textbooks. One that is highly
recommended for its thoroughness and clarity is by
Lindeman, Gold and Merenda (1382). A general overview is given
by Lewis-Beck (1980).

4

See Appendix B for discussion of linear and nonlinear
regression models.

5
If it is understood that the summation limits range from the first
observation (im1) to the last (imn), then we can drop the summation
limits; n refers to the total number of observations for the
criterion and predictor(s). This sample size is the same
regardless of the number of predictors. Later when the algebra
becomes more complex, we use summation limits extensively.

6

As mentioned earlier, it is assumed that the reader is familiar
with the author's 1983a paper.

7

The regression model for one standardized predictor ;6:

5 2



ZA A+BZ
1 1

The observed standard score model is:

Z + e

where:
Z" the predicted criterion ;11 standard score form,
V

A the slope inercept ierm (not standardized--
see O'Brien, 1982c)

the standardized predictor; i.e.,

1

8

z (x -7 )/S where S is the
1 1 1 1 1

standard deviation of X
1

slope term (regression or beta weight)
1

the prediction error.

47

The reader may wonder why we divide by the term, n-2. This term
represents the degrees of freedom for the unbiased standard error
of estimate for one predictor.
It can be shown that dividing by the appropraite degrees of freedom
term makes the sample standard error of estimate unbiased;i.e.,
the expected value of the sample standard error of estimate
equals the population parameter.
In general, the degrees of freedom for the unbiased
standard error of estiNate is: n-(0.1) , where p the number of
predictors in the regression model. For one predictor,
n-(p+1) n-(1+1) n-2. p + 1 arises from the number of parameters
that can be estimated in any raw score linear
revession model--p slope (b) terms plus the slope intercept term.
For a good discussion of degrees of freedom, see the
classic paper by Helen Walker (1940,1971). See also Stilson (19BG).

9

An alternate approach to the derivations could be used
by working with matrix albegra notation. The author
intends to present the derivations of this paper
and others in this series in matrix algebra. They
will be written as part of this series for ERIC.
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